Для специалиста

Руководство по монтажу и техобслуживанию

Буферная ёмкость allSTOR

VPS 300/3, VPS 500/3, VPS 800/3, VPS 1000/3, VPS 1500/3, VPS 2000/3

RU

info@vaillant.de www.vaillant.de

Содержание

Соде	ржание	
1	Безопасность	3
1.1	Относящиеся к действию	
	предупредительные указания	. 3
1.2	Использование по назначению	. 3
1.3	Общие указания по технике безопасности	. 3
1.4	Предписания	. 4
2	Указания по документации	5
2.1	Оригинальное руководство по эксплуатации	. 5
2.2	Соблюдение совместно действующей документации	. 5
2.3	Хранение документации	. 5
2.4	Действительность руководства	. 5
3	Описание прибора и функционирования	5
3.1	Конструкция	. 5
3.2	Принцип работы	. 6
4	Установка	6
4.1	Проверка комплекта поставки	. 6
4.2	Проверка требований к месту установки	. 6
4.3	Транспортировка буферной емкости	. 7
4.4	Извлечение буферной емкости из упаковки и ее установка	. 8
4.5	Подготовка к подсоединению труб	. 8
4.6	Монтаж теплоизоляции	. 8
4.7	Подсоединение труб к буферной емкости	10
4.8	Установка насосной группы горячего водоснабжения и насосной группы нагрева	10
5	от гелиосистемы	10
5.1	Ввод в эксплуатацию Наполнение буферной емкости и удаление	10
•	из нее воздуха	10
5.2	Завершение ввода в эксплуатацию	11
6	Передача эксплуатирующей стороне	11
7	Устранение неполадок	11
8	Осмотр, техобслуживание и запасные	40
0 1	части	12 12
8.1	План техобслуживания	
8.2	Проверка герметичности подключений	12
8.3 8.4	Удаление воздуха из буферной емкости	12
• • •	Наполнение буферной емкости	12
8.5	Проверка соединений, теплоизоляции и компонентов на присутствие повреждений	12
8.6	Уход за изделием	12
8.7	Приобретение запасных частей	12
9	Вывод из эксплуатации	12
9.1	Разгрузка буферной емкости	12
9.2	Вывод компонентов из эксплуатации	13
10	Переработка и утилизация	13
11	Технические характеристики	14
11.1	Присоединительные размеры	14
11.2	Таблица технических характеристик	15
11.3	Размеры соединений	15

Система буферной емкости allSTOR	17
Описание системы	17
Расчет системы	17
Гидравлические схемы	19
Ввод системы в эксплуатацию	27
Сервисная служба	27

12.1 12.2 12.3 12.4 13

1 Безопасность

1.1 Относящиеся к действию предупредительные указания

Классификация относящихся к действию предупредительных указаний

Относящиеся к действию предупредительные указания классифицированы по степени возможной опасности с помощью предупредительных знаков и сигнальных слов следующим образом:

Предупредительные знаки и сигнальные слова

Опасность!

Непосредственная опасность для жизни или опасность тяжёлых травм

Опасность!

Опасность для жизни в результате поражения током

Предупреждение!

Опасность незначительных травм

Осторожно!

Риск материального ущерба или вреда окружающей среде

1.2 Использование по назначению

В случае ненадлежащего использования или использования не по назначению возможна опасность для здоровья и жизни пользователя или третьих лиц, а также опасность нанесения ущерба изделию и другим материальным ценностям.

Данное изделие предназначено специально для систем центрального отопления закрытого типа, устанавливаемых в жилых домах, спортивных залах и коммерческих предприятиях. Рассматриваются все теплогенераторы включая их комбинации.

Действительно для: Vaillant

Использование по назначению подразумевает:

 соблюдение прилагаемых руководств по эксплуатации, монтажу и техобслуживанию изделия фирмы Vaillant, а также всех прочих компонентов системы соблюдение всех приведённых в руководствах условий выполнения осмотров и техобслуживания.

Использование изделия в автомобилях, таких как, например, передвижные дома или автокемперы, считается использованием не по назначению. Автомобилями не считаются единицы техники, стационарно установленные на длительное время (так называемая стационарная установка).

Иное использование, нежели описанное в данном руководстве, или использование, выходящее за рамки описанного здесь использования, считается использованием не по назначению. Использованием не по назначению считается также любое непосредственное применение в коммерческих и промышленных целях.

Внимание!

Любое неправильное использование запрещено.

1.3 Общие указания по технике безопасности

1.3.1 Опасность для жизни из-за отсутствия защитных устройств

Отсутствие защитных устройств (например, предохранительный вентиль, расширительный бак) может привести к опасному для жизни ошпариванию и к другим травмам, например, в результате взрыва. На содержащихся в настоящем документе схемах указаны не все необходимые для надлежащей установки защитные устройства.

- Установите в систему необходимые защитные устройства.
- Объясните эксплуатирующей стороне принцип работы и расположение защитных устройств.
- Соблюдайте действующие внутригосударственные и международные законы, стандарты и директивы.

1.3.2 Опасность замерзания

Если изделие не используется и хранится длительное время (например, в течение зимнего отпуска) в неотапливаемом помещении, то греющая вода, находящаяся в

изделии и в трубопроводах, может замерзнуть.

▶ Установите буферную емкость в сухом помещении установки, полностью неподверженном воздействию мороза.

1.3.3 Материальный ущерб в результате ненадлежащего использования и/или неподходящего инструмента

Ненадлежащее использование и/или неподходящий инструмент могут привести к повреждению (например, к утечке газа или воды).

 Для затягивания или ослабления резьбовых соединений всегда используйте подходящие рожковые гаечные ключи (гаечные ключи с открытым зевом). Не используйте газовые (трубные) ключи, удлинители и пр.

1.3.4 Материальный ущерб из-за нарушения герметичности

- Следите за тем, чтобы на соединительных проводах не возникали механические напряжения.
- ► Не вешайте грузы (например, одежду) на трубопроводы.

1.3.5 Опасность по причине изменений вблизи изделия

- Если выполненные на изделии изменения могут повлиять на эксплуатационную безопасность системы, то в этом случае не предпринимайте никаких изменений:
- на изделии
- на подводящей линии газа, приточного воздуха, воды и электрического тока
- на сливной линии и на предохранительном вентиле для греющей воды
- на строительных конструкциях

1.3.6 Материальный ущерб из-за слишком жесткой воды

Слишком жесткая вода может негативно сказаться на пригодности системы к эксплуатации и за короткое время стать причиной повреждений.

- Узнайте у сотрудников местной водопроводной станции, каков градус жесткости воды в вашем водопроводе.
- ► Если используемую воду нужно смягчить, руководствуйтесь правилами, указанными в директиве VDI 2035.
- ▶ Прочитайте в руководствах по монтажу и техобслуживанию приборов, из которых состоит система, какого качества должна быть используемая вода.

1.4 Предписания

1.4.1 Правила хранения и транспортировки

Действительно для: Россия

Аппараты Vaillant должны транспортироваться и храниться в оригинальной упаковке в соответствии с правилами, нанесёнными на упаковку с помощью международных стандартизованных пиктограмм.

Температура окружающего воздуха при транспортировке и хранении должна составлять от -40 до +40 °C.

Так как все аппараты проходят 100-процентный контроль функционирования, нормальным явлением считается небольшое количество воды в аппарате, которое, при соблюдении правил транспортировки и хранения, не приведёт к повреждениям узлов аппарата.

1.4.2 Предписания (директивы, законы, стандарты)

Действительно для: Россия

При выборе места установки, проектировании, монтаже, эксплуатации, проведении инспекции, технического обслуживания и ремонта прибора следует соблюдать государственные и местные нормы и правила, а также дополнительные распоряжения, предписания и т.п. соответствующих ведомств касательно газоснабжения, дымоотведения, водоснабжения, канализации, электроснабжения, пожарной безопасности и т.д. – в зависимости от типа прибора.

2 Указания по документации

2.1 Оригинальное руководство по эксплуатации

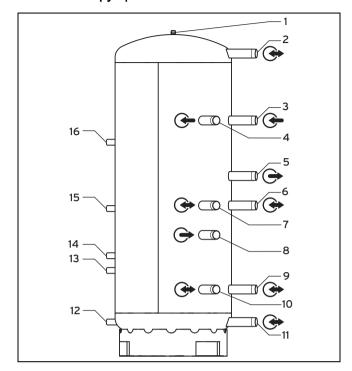
Настоящее руководство представляет собой оригинальное руководство в контексте директивы по машинному оборудованию.

2.2 Соблюдение совместно действующей документации

 Обязательно соблюдайте инструкции, содержащиеся во всех руководствах по эксплуатации и монтажу, прилагаемых к компонентам системы.

2.3 Хранение документации

► Передайте данное руководство, а также всю совместно действующую документацию и, при необходимости требующиеся вспомогательные средства стороне, эксплуатирующей систему.


2.4 Действительность руководства

Действие настоящего руководства распространяется исключительно на следующие изделия:

Обозначение типа	Артикул
VPS 300/3 - 5	0010015130
VPS 300/3 - 7	0010015124
VPS 500/3 - 5	0010015131
VPS 500/3 - 7	0010015125
VPS 800/3 - 5	0010015132
VPS 800/3 - 7	0010015126
VPS 1000/3 - 5	0010015133
VPS 1000/3 - 7	0010015127
VPS 1500/3 - 5	0010015134
VPS 1500/3 - 7	0010015128
VPS 2000/3 - 5	0010015135
VPS 2000/3 - 7	0010015129

3 Описание прибора и функционирования

3.1 Конструкция

- Отверстие для вентиля для выпуска воздуха
- 2 Подающая линия греющей воды для насосной группы горячего водоснабжения при настенном монтаже/подающая линия или обратная линия для каскада
- Подающая линия отопительных аппаратов для расхода горячей воды
- 4 Подающая линия отопительных аппаратов для расхода горячей воды
- 5 Обратная линия отопительных аппаратов для расхода горячей воды
- 6 Подающая линия отопительных аппаратов для расхода греющей воды/подающая линия отопительных контуров
- 7 Подающая линия отопительных аппаратов для расхода греющей воды/подающая линия отопительных контуров
- Обратная линия отопительных аппаратов для расхода греющей воды

- Обратная линия отопительных аппаратов для расхода горячей воды/обратная линия отопительных контуров
- 10 Обратная линия отопительных аппаратов для расхода греющей воды/обратная линия отопительных контуров
- 11 Обратная линия греющей воды для насосной группы горячего водоснабжения при настенном монтаже/подающая линия или обратная линия для каскада
- 12 Обратная линия греющей воды для насосной группы нагрева от гелиосистемы (только VPS/3-7)
- 13 Подающая линия греющей воды для насосной группы нагрева от гелиосистемы для низких температур (только VPS/3-7)

- 14 Подающая линия греющей воды для насосной группы нагрева от гелиосистемы для высоких температур (только VPS/3-7)
- 15 Обратная линия греющей воды для насосной группы горячего водоснабжения (только VPS/3-7)
- 16 Подающая линия греющей воды для насосной группы горячего водоснабжения (только VPS/3-7)

Буферная емкость изготовлена из стали. Снаружи он имеет антикоррозийное лаковое покрытие черного цвета.

Буферная емкость имеет:

- Соединения для трубопроводов:
 - Отопительные контуры
 - Отопительные аппараты
 - Насосная группа нагрева от гелиосистемы
 - Насосная группа горячего водоснабжения
- Один вентиль для выпуска воздуха
- Восемь контактов для датчиков

- F1 Контакт для датчика 1
- F2 Контакт для датчика 2
- F3 Контакт для датчика 3
- F4 Контакт для датчика 4
- F5 Контакт для датчика 5
- F6 Контакт для датчика 6
- F7 Контакт для датчика 7
- F8 Контакт для датчика 8 (только для VPMD)

Положение датчиков на контактах для датчиков, расположенных на буферной емкости, зависит от используемого отопительного аппарата.

3.2 Принцип работы

Буферная емкость получает тепло от одного или нескольких теплогенераторов и от одной насосной группы нагрева от гелиосистемы. Буферная емкость выступает в роли промежуточной емкости для греющей воды для ее последующей передачи на отопительный контур или на насосную группу горячего водоснабжения для подготовки горячей воды.

4 Установка

4.1 Проверка комплекта поставки

▶ Проверьте комплектность поставки.

Количе-	Обозначение
СТВО	
1	Буферная емкость
1	Вентиль для выпуска воздуха
1	Верхняя теплоизоляция
1	Нижняя теплоизоляция (нижняя подкладка)
2/3	Боковые теплоизоляции
2/3	Защитные накладки
1	Крышка
4	Термические изолирующие крышки
10	Декоративные розетки
1	Маркировочная табличка-наклейка
1	Руководство по эксплуатации
1	Руководство по монтажу и техобслуживанию

4.2 Проверка требований к месту установки

Осторожно!

Материальный ущерб в результате воздействия мороза

Замерзшая в системе вода может нанести ущерб системе отопления и помещению установки.

 Установите буферную емкость в сухом помещении, полностью неподверженном воздействию мороза.

Осторожно!

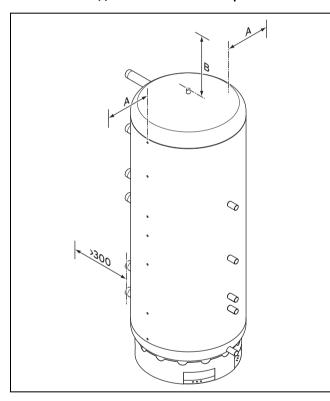
Материальный ущерб из-за вытекающей греющей воды

В аварийном случае из буферной емкости может вытечь вся греющая вода системы отопления.

 Выберите такое место установки, чтобы в аварийном случае большое количество воды могло свободно стечь (например, напольный слив).

Осторожно!

Материальный ущерб из-за высокой нагрузки

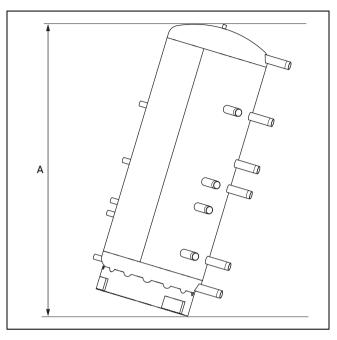

Наполненная буферная емкость из-за своего веса может повредить опорную поверхность.

- При выборе места установки учитывайте вес наполненной буферной емкости и предельную нагрузку опорной поверхности.
- При необходимости подготовьте подходящий фундамент.

Условия: Чтобы установить насосную группу горячего водоснабжения или насосную группу нагрева от гелиосистемы

 Выберите место установки рядом с сетевой штепсельной розеткой.

4.2.1 Соблюдение минимальных расстояний



 Во время установки соблюдайте достаточное расстояние до стен (A) и до потолка (B).

Обозначе- ние типа	Расстояние А [мм]	Расстояние до потолка В [мм]
VPS 300/3	350	
VPS 500/3	450	
VPS 800/3	500	350
VPS 1000/3	500	330
VPS 1500/3	600	
VPS 2000/3	650	

Условия: Чтобы установить насосную группу горячего водоснабжения или насосную группу нагрева от гелиосистемы

 Учитывайте высоту и положение трубопроводов для насосной группы горячего водоснабжения и для насосной группы нагрева от гелиосистемы.

- А Кантовальный размер
- 2. Учитывайте кантовальный размер буферной емкости при выборе помещения установки.

Обозначе- ние типа	Единица измерения	Допуск	Канто- вальный размер А					
VPS 300/3	ММ	± 20	1734					
VPS 500/3	ММ	± 20	1730					
VPS 800/3	ММ	± 20	1870					
VPS 1000/3	ММ	± 20	2243					
VPS 1500/3	ММ	± 20	2253					
VPS 2000/3	ММ	± 20	2394					

4.3 Транспортировка буферной емкости

Опасность!

Опасность травмирования и материальный ущерб из-за ненадлежащей транспортировки

При наклонном положении резьбовые соединения на кольце основания могут ослабиться. Буферная емкость может опрокинуться с паллеты и кого-нибудь травмировать.

- Выполняйте транспортировку буферной емкости на паллете с помощью подъемной тележки.
- Снесите буферную емкость без паллеты (например, лесенки) вниз.

Осторожно!

Опасность повреждения резьбы

Незащищенная резьба может быть повреждена во время транспортировки.

- Снимайте защитные колпачки для резьбы только на месте установки.
- Чтобы не испачкать теплоизоляцию, надевайте перчатки.

Указание

На время транспортировки буферная емкость может оставаться на паллете.

- 2. Доставьте буферную емкость к месту установки.
- 3. Устанавливайте буферную емкость как можно ближе к теплогенератору.
- 4. Выбирайте место установки так, чтобы можно было провести необходимые магистрали.
- Обратите внимание на то, что основание должно быть ровным и прочным.
- 6. Снимите защитную пленку с буферной емкости.
- 7. Сохраните защитную пленку.
 - После завершения монтажа теплоизоляции защитную пленку нужно снова надеть на буферную емкость.
- Снимите резьбовые соединения на кольце основания.
- 9. Доставьте буферную емкость на место установки.
- Доставьте теплоизоляцию и защитные накладки к буферной емкости.

4.4 Извлечение буферной емкости из упаковки и ее установка

Осторожно!

Опасность повреждения резьбы

Незащищенная резьба может быть повреждена во время транспортировки.

- Снимайте защитные колпачки для резьбы только на месте установки.
- Осторожно снимите защитную пленку с буферной емкости, не повредив антикоррозийное лаковое покрытие.
- Установите буферную емкость вертикально и обеспечьте ее устойчивость.
- Установите буферную емкость на место установки. Соблюдайте присоединительные размеры (→ страница 14).
- Направьте соединения насосной группы горячего водоснабжения и насосной группы нагрева от гелиосистемы вперед.

4.5 Подготовка к подсоединению труб

- Установите датчик температуры емкости в определенном месте в соответствии с главой "Гидравлические схемы".
- 2. Установите вентиль для выпуска воздуха.

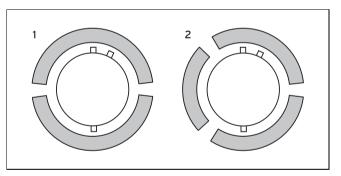
Условия: Чтобы установить насосную группу горячего водоснабжения и насосную группу нагрева от гелиосистемы.

- Установите адаптер емкости для насосной группы горячего водоснабжения и для насосной группы нагрева от гелиосистемы.
- Закройте не нужные подключения с помощью гидравлических крышек.

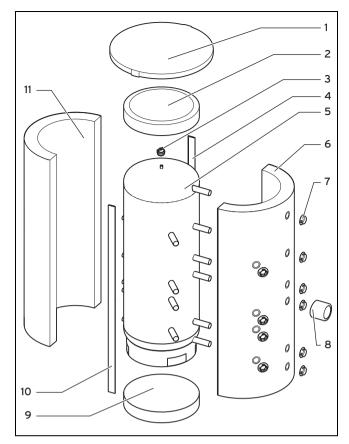
4.6 Монтаж теплоизоляции

Указание

Чтобы выполнять работы было легче:


Сначала подключите датчики к прижимным планкам для датчиков.

Установите вентиль для выпуска воздуха.


Затем выполните монтаж теплоизоляции.

Затем соедините трубами буферную ёмкость с отопительными контурами и теплогенераторами.

На заключительном этапе установите (при необходимости) насосную группу горячего водоснабжения и насосную группу нагрева от гелиосистемы.

- 1 VPS 300/3, VPS 500/3, VPS 800/3, VPS 1000/3
- 2 VPS 1500/3, VPS 2000/3
- 1. В зависимости от типа буферной ёмкости учитывайте монтажные положения теплоизоляций (1, 2).

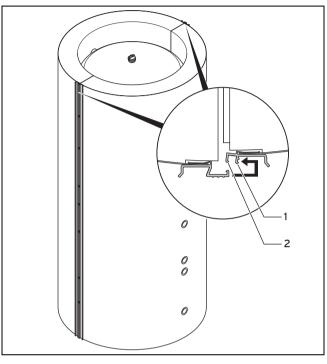
- Крышка
- Верхняя теплоизоляция
- Вентиль для выпуска
- Защитная накладка
- Буферная ёмкость
- Боковая теплоизоляция
- Накладка
- Термическая изолирую-
- Нижняя теплоизоляция
- 10 Защитная накладка
- 11 Боковая теплоизоляция
- щая крышка

Осторожно!

Материальный ущерб из-за низкой температуры

При температуре ниже 10 °C существует опасность разрушения теплоизоляции.

- Занесите теплоизоляцию в помещение с температурой не менее 10 °C.
- Подождите, пока температура теплоизоляции не сравняется с температурой в помещении.
- 2. Достаньте теплоизоляции из упаковки.
- 3. Слегка наклоните ёмкость и прижмите нижнюю теплоизоляцию установочной ножкой.
- 4. Подключите все необходимые датчики к прижимным планкам для датчиков.



Осторожно!

Материальный ущерб из-за вытекающей греющей воды

Греющая вода может вытекать из не используемых соединений и стать причиной материального ущерба.

- Прежде чем установить изоляцию, закройте не нужные соединения плотно закрывающимися крышками.
- Удалите остатки волокнистого материала из выштампованных отверстий в теплоизоляциях.
- Выполните монтаж боковых теплоизоляций, проведя в выштампованные отверстия в теплоизоляциях трубы буферной ёмкости.

- Последнее положение фиксации
- Первое положение фиксации
- 7. Прижмите теплоизоляции к буферной ёмкости так, чтобы зажимные планки, расположенные между двумя теплоизоляциями, защелкнулись в первом положении фиксации (2).
- 8. Прижмите остальные зажимные планки так, чтобы они защелкнулись в первом положении фиксации.
- 9. Сожмите зажимные планки между двух теплоизоляций так, чтобы они защелкнулись в последнем положении фиксации (1).
- 10. Сожмите остальные зажимные планки так, чтобы они защелкнулись в последнем положении фиксации.
- 11. Прикрепите защитные накладки.
- 12. Наденьте декоративные розетки на подключения буферной ёмкости.
- Наденьте термические изолирующие крышки на не используемые подключения и прочно закрепите их.
- 14. Наденьте защитную пленку на буферную ёмкость.

4.7 Подсоединение труб к буферной емкости

Опасность!

Опасность травмирования из-за опрокидывания буферной емкости

Если вы сначала будете устанавливать насосную группу горячего водоснабжения или насосную группу нагрева от гелиосистемы, то емкость может опрокинуться вперед.

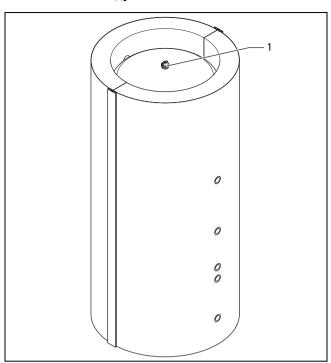
Подсоедините сначала трубы к задним соединениям.

Опасность!

Материальный ущерб из-за посторонних предметов в системе отопления

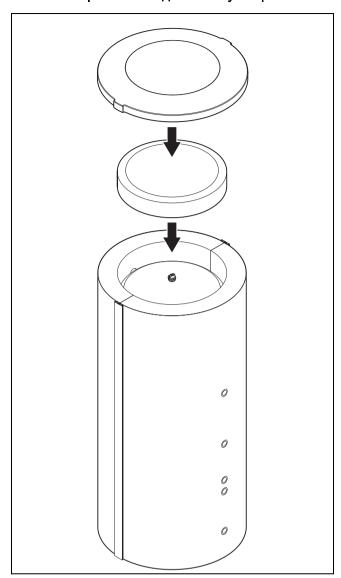
Поступающие через трубопроводы отходы, как шлак от сварки, окалина, пакля, мастика, ржавчина, крупная грязь и т. п. могут скапливаться в буферной емкости и нарушать процесс эксплуатации.

- Удалите отходы, тщательно промыв систему отопления перед подключением буферной емкости.
- Выполните расчет расширительного бака в соответствии с правилами для греющий воды и системы отопления.
- 2. Установите расширительный бак.
- 3. Соедините трубами буферную емкость с отопительными контурами и теплогенераторами в соответствии с главой "Гидравлические схемы".


4.8 Установка насосной группы горячего водоснабжения и насосной группы нагрева от гелиосистемы

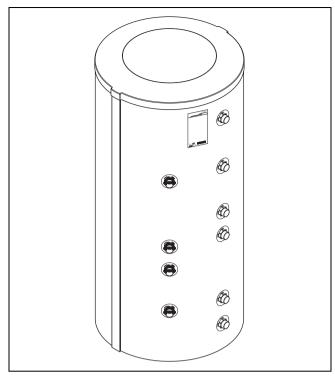
- Разорвите защитную пленку буферной емкости в местах, где расположены трубы.
- Установите насосную группу горячего водоснабжения и насосную группу нагрева от гелиосистемы в соответствии с руководствами по монтажу и техобслуживанию, которые прилагаются к данным насосным группам.

5 Ввод в эксплуатацию


- 1. Снимите защитную пленку с буферной емкости.
- Выполняйте первый ввод в эксплуатацию и каждый повторный ввод буферной емкости в эксплуатацию в соответствии с главой "Ввод системы в эксплуатацию".

5.1 Наполнение буферной емкости и удаление из нее воздуха

- Вентиль для выпуска воздуха
- 1. Откройте вентиль для выпуска воздуха (1).
- Наполняйте систему, как описано в главе "Наполнение системы и удаление воздуха", пока из буферной емкости не будет удален воздух.
- 3. Перекройте вентиль для выпуска воздуха.
- Проверьте вентиль для выпуска воздуха на герметичность.


5.2 Завершение ввода в эксплуатацию

1. Вставьте верхнюю теплоизоляцию между боковых теплоизоляций так, чтобы она прочно села.

Условия: Насосная группа горячего водоснабжения или насосная группа нагрева от гелиосистемы установлена

- Выполните электромонтаж насосной группы горячего водоснабжения и насосной группы нагрева от гелиосистемы в соответствии с руководствами, которые прилагаются к данным насосным группам.
- 2. Наденьте крышку на верхнюю теплоизоляцию.

 Наклейте маркировочную табличку на теплоизоляцию сзади.

6 Передача эксплуатирующей стороне

- Объясните эксплуатирующей стороне порядок обращения с системой. Ответьте на ее вопросы. В особенности обратите внимание эксплуатирующей стороны на указания по технике безопасности, которые она должна соблюдать.
- 2. Объясните эксплуатирующей стороне, что для наполнения системы отопления нужно принимать во внимание качество имеющейся воды.
- 3. Объясните эксплуатирующей стороне, что для наполнения системы отопления нужно использовать только обычную водопроводную воду без химических добавок.
- 4. Объясните эксплуатирующей стороне расположение и принцип работы защитных устройств.
- 5. Проинформируйте эксплуатирующую сторону о необходимости технического обслуживания системы с указанной периодичностью.
- Передайте эксплуатирующей стороне все предназначенные для неё руководства и документы на прибор для хранения.

7 Устранение неполадок

В следующей таблице приведена информация о возможных неполадках, возникающих при эксплуатации буферной емкости, их причинах и устранении.

Неполадка	Возможная при- чина	Устранение
Греющая вода ка- пает из буферной емкости.	Негерметичность соединений	Выполните уплот- нение соедине- ний.

Неполадка	Возможная при- чина	Устранение
Из буферной ем- кости доносится шум плеска.	Воздух в буфер- ной емкости	Удалите воздух из буферной емкости.
Регулятор отображает неправильную температуру воды в емкости.	Неисправен термодатчик или он установлен не в правильном положении	Проверьте правильное положение термодатчиков в соответствии с руководством помонтажу системы буферной емкости allSTOR. Замените термодатчик.

8 Осмотр, техобслуживание и запасные части

8.1 План техобслуживания

8.1.1 Календарные межсервисные интервалы

Календарные межсервисные интервалы

Периодич- ность	Работы по техническому обслуживанию	Стра- ница
Ежегодно	Проверка герметичности подключений	12
	Удаление воздуха из буферной ем- кости	12
	Наполнение буферной емкости	12
	Проверка соединений, теплоизоляции и компонентов на присутствие повреждений	12
	Уход за изделием	12

8.2 Проверка герметичности подключений

Проверьте герметичность всех резьбовых соединений.

8.3 Удаление воздуха из буферной емкости

 Удалите воздух из системы, как описано в главе "Наполнение системы и удаление воздуха".

8.4 Наполнение буферной емкости

 Наполните систему, как описано в главе "Наполнение системы и удаление воздуха".

8.5 Проверка соединений, теплоизоляции и компонентов на присутствие повреждений

Проверьте все соединения и теплоизоляцию буферной емкости, а также подключенные компоненты на присутствие повреждений.

8.6 Уход за изделием

Осторожно!

Риск материального ущерба в результате использования непригодных чистящих средств!

Непригодные чистящие средства могут повредить облицовку, арматуру или элементы управления.

- Не используйте аэрозоли, абразивные средства, моющие средства, содержащие растворители или хлор чистящие средства.
- Очищайте облицовку влажной ветошью с небольшим количеством не содержащего растворителей мыла.

8.7 Приобретение запасных частей

Информацию о доступных оригинальных запасных частях Vaillant Вы можете получить по указанному с обратной стороны контактному адресу.

Если при техобслуживании или ремонте Вам требуются запасные части, тогда используйте исключительно оригинальные запасные части фирмы Vaillant.

9 Вывод из эксплуатации

9.1 Разгрузка буферной емкости

Опасность!

Опасность для жизни от находящихся под напряжением разъемов!

При выполнении работ на распределительных коробках компонентов системы с подключением к сети низкого напряжения (230 В) существует опасность для жизни в результате поражения электрическим током. Клеммы подключения к сети постоянно находятся под напряжением, в том числе при выключенном основном выключателе!

- Отсоедините компоненты системы от электрической сети, вынув штепсельную вилку или обесточив компоненты системы с помощью разъединительного устройства с расстоянием между контактами минимум 3 мм (например, предохранители или силовой выключатель).
- Примите меры по предотвращению повторного включения подвода электрического тока.

- ▶ Проверьте компоненты системы на отсутствие напряжения.
- Открывайте распределительную коробку только когда компонент системы находится в обесточенном состоянии.

Условия: Отопительные контуры разгружать не нужно

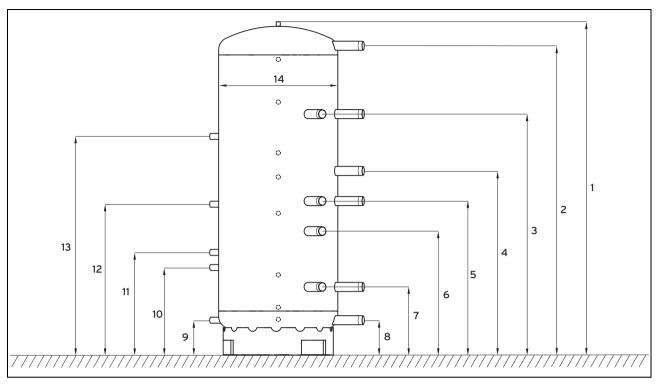
- Перекройте отопительные контуры с помощью запорной арматуры.
- 1. Подсоедините спускной шланг к расположенному в самой нижней точке крану опорожнения контура буферной емкости.
- Опустите спускной шланг в подходящее сточное устройство (отверстие канализационной трубы, умывальник).
- 3. Откройте кран опорожнения.
- 4. Снимите крышку буферной емкости.
- 5. При необходимости отложите в сторону соединительный кабель подключенной насосной группы горячего водоснабжения и/или насосной группы нагрева от гелиосистемы.
- Снимите верхнюю теплоизоляцию буферной емкости.
- Откройте вентиль для выпуска воздуха на буферной емкости.
 - ⊲ Вода вытекает из буферной емкости.

9.2 Вывод компонентов из эксплуатации

 Выведите отдельные компоненты системы буферной емкости allSTOR из эксплуатации согласно соответствующему руководству по монтажу.

10 Переработка и утилизация

Утилизация упаковки

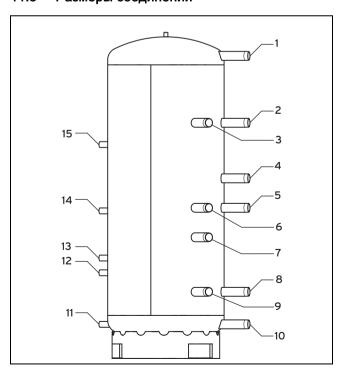

▶ Утилизируйте упаковку надлежащим образом.

Утилизация изделия и принадлежностей

- ► Не утилизируйте ни изделие, ни принадлежности вместе с бытовыми отходами.
- Утилизируйте продукт и все принадлежности надлежащим образом.
- ▶ Соблюдайте все соответствующие предписания.

11 Технические характеристики

11.1 Присоединительные размеры



Раз- мер	Еди- ница изме- рения	Допуск	VPS 300/3	VPS 500/3	VPS 800/3	VPS 1000/3	VPS 1500/3	VPS 2000/3
1	MM	± 10	1720	1700	1832	2212	2190	2313
2	ММ	± 10	1617	1570	1670	2051	1973	2080
3	ММ	± 10	1210	1230	1330	1598	1573	1656
4	ММ	± 10	920	930	1020	1220	1227	1201
5	ММ	± 10	744	750	820	1020	1000	1008
6	ММ	± 10	574	579	636	822	797	803
7	ММ	± 10	365	394	421	451	521	551
8	ММ	± 10	130	190	231	231	291	298
9	ММ	± 10	130	190	231	231	291	298
10	ММ	± 10	480	540	581	581	641	648
11	ММ	± 10	580	640	681	681	741	748
12	ММ	± 10	900	960	1001	1001	1061	1068
13	ММ	± 10	1350	1410	1451	1451	1511	1518
14	MM	± 2	Ø 500	Ø 650	Ø 790	Ø 790	Ø 1000	Ø 1100

11.2 Таблица технических характеристик

Название	Еди- ницы измере- ния	Допуск	VPS 300/3	VPS 500/3	VPS 800/3	VPS 1000/3	VPS 1500/3	VPS 2000/3
Содержимое накопительной емкости	Л	± 2	303	491	778	962	1505	1917
Доп. рабочее избыточное давление (система нагрева)	МПа (бар)	_			0,3	(3)		
Температура греющей воды	°C	_			9	5		
Внешний диаметр накопи- тельной емкости (без теплоизоляции)	ММ	± 2	500	650	790	790	1000	1100
Внешний диаметр накопительной емкости (с теплоизоляцией)	ММ	± 10	780	930	1070	1070	1400	1500
Глубина накопительной емкости (вместе с теплоизоляцией и соединениями)	ММ	± 10	828	978	1118	1118	1448	1548
Высота накопительной емкости (вместе с вентилем для выпуска воздуха и установочным кольцом)	ММ	± 10	1735	1715	1846	2226	2205	2330
Высота буферной емкости (вместе с теплоизоляцией)	ММ	± 10	1833	1813	1944	2324	2362	2485
Вес накопительной емкости (пустая)	КГ	± 10	70	90	130	145	210	240
Вес накопительной емкости (полная)	КГ	± 10	373	581	908	1107	1715	2157
Кантовальный размер	ММ	± 20	1734	1730	1870	2243	2253	2394
Расход энергии готовности	кВт*ч/24 ч	_	< 1,7	< 2,0	< 2,4	< 2,5	< 2,9	< 3,3

11.3 Размеры соединений

11 Технические характеристики

	Насосная группа горячего водоснабжения	Насосная группа нагрева от гелиосистемы	Соединения сзади
	№ поз. 14, 15	№ поз. 11, 12, 13	№ поз. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
VPS 300/3			R 1 1/2
VPS 500/3	DN 25		K 1 1/2
VPS 800/3		DN 25	D 2
VPS 1000/3	Внутренняя резьба 1	Внутренняя резьба 1	R 2
VPS 1500/3			R 2 1/2
VPS 2000/3			K 2 1/2

12 Система буферной емкости allSTOR

В этой главе на примерах описано, как буферную емкость **allSTOR** можно подключить к различным системам.

Опасность!

Опасность для жизни в результате ненадлежащей установки системы

Ненадлежаще установленная система может стать причиной как травмирования людей, так и материального ущерба.

- Выполните планировку системы в соответствии с предписаниями страны, где она должна быть установлена.
- Запросите у фирмы Vaillant информацию для проектирования.

12.1 Описание системы

Система буферной емкости **allSTOR** может использоваться для эксплуатации:

- систем отопления с приготовлением горячей воды;
- только систем отопления (без приготовления горячей воды);
- только систем горячей воды (без системы отопления);

с или без гелиоподдержки.

Система буферной емкости **allSTOR** состоит из буферной емкости **VPS/3** и как минимум еще одного компонента. Доступны следующие буферные емкости и компоненты:

- Буферная емкость
 - VPS 300/3
 - VPS 500/3
 - VPS 800/3
 - VPS 1000/3
 - VPS 1500/3
 - VPS 2000/3
- Насосная группа нагрева от гелиосистемы VPM 20/2 S или VPM 60/2 S
- Насосная группа горячего водоснабжения VPM 20/25/2 W, VPM 30/35/2 W или VPM 40/45/2 W с или без циркуляционного насоса

12.2 Расчет системы

- Убедитесь, что планировка системы была выполнена в соответствии с технологическими правилами и действующими стандартами планировки.
- Соблюдайте информацию для проектирования подключаемых приборов.
- ▶ Придерживайтесь примерных гидравлических схем, см. главу "Гидравлические схемы".
- При расчете необходимых параметров учитывайте следующие пункты:

Буферная емкость VPS/3

 Расход горячей воды (согласовано с насосной группой горячего водоснабжения VPM/2 W)

- Отопительная нагрузка
- Тип отопительного аппарата (время работы, время автономной работы при полной нагрузке)
- Время накопления запаса солнечной энергии

Насосная группа горячего водоснабжения VPM/2 W

- Расход горячей воды зависит от:
 - Количество людей
 - Вид использования
 - Одновременность
 - Объем буферной емкости

Насосная группа нагрева от гелиосистемы VPM/2 S

- Тип коллектора
- Площадь коллектора
- Расположение коллектора

Расширительный бак системы отопления

- Объем системы (включая буферную емкость)
- Высота системы и давление на входе расширительного бака
- Гидравлический затвор

Расширительный бак гелиоустановки

- Объем гелиосистемы
- Высота системы и давление на входе расширительного бака

Отопительные аппараты

- Теплопотребление здания с учетом производительности гелиоустановки
- Технологии:
 - Отопительные котлы на жидком топливе/приборы, работающие от теплоты сгорания жидкого топлива
 - Газовые отопительные котлы/приборы, работающие от теплоты сгорания газа/газовые отопительные аппараты
 - Пеллетные отопительные котлы
 - Тепловые насосы (вода, рассол, воздух)

Циркуляционный насос

- Запуск
- Напор
- Объемный расход

Провода шины данных eBUS

- Поперечное сечение провода: минимум 0,75 мм²
- Дополнительная информация: см. Руководство по монтажу регулятора гелиосистемы VRS 620/3

Соединительные провода и провода малого напряжения

Информация по соединительным проводам и проводам малого напряжения: см. Руководства по монтажу приборов

Трубопроводы гелиоконтура

- Гибкие трубопроводы из нержавеющей стали или
- медные трубопроводы:
 - паянные твердым припоем или

12 Система буферной емкости allSTOR

- снабжены пригодными для эксплуатации в гелиосистемах пресс-фитингами/уплотнениями
- отсутствие пластмассовых труб
- равномерный объемный расход с номинальным расходом
- достаточная изоляция
- Термостойкость до 140 °C
- с защитой от расклевывания птицами
- Стойкость к ультрафиолетовому излучению
- Диаметр: см. главу "Диаметр трубы" в Руководстве по монтажу и техобслуживанию насосной группы нагрева от гелиосистемы

Отопительные контуры

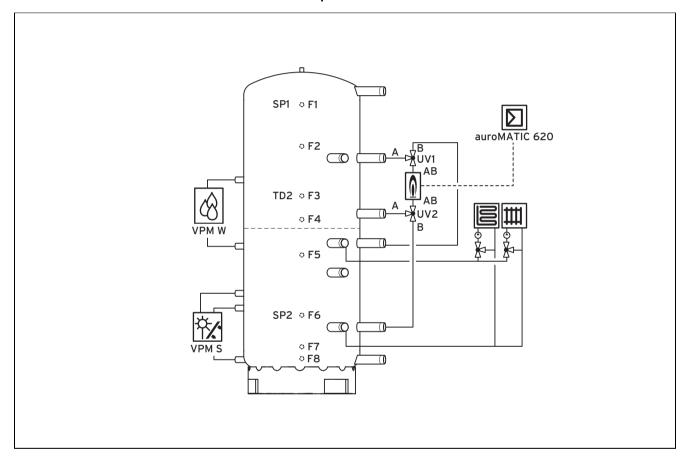
- возможно любое количество отопительных контуров (зависит от регулятора)
- Типы отопительных контуров:
 - Статические поверхности нагрева
 Поверхности нагрева пола
 Компактный теплопункт
- Поверхности нагрева пола:
 - Температура теплоносителя в подающей линии макс. 40° С
- Регулируемые отопительные контуры:
 При использовании насосной группы нагрева от гелиосистемы VPM/2 S буферная емкость разогревается до максимум 95° C.
 - только регулируемые отопительные контуры
- Максимальная суммарная мощность отопительных контуров:

VPS 300/3: 8 m³/ч
 VPS 500/3: 8 m³/ч
 VPS 800/3: 15 m³/ч
 VPS 1000/3: 15 m³/ч
 VPS 1500/3: 30 m³/ч
 VPS 2000/3: 30 m³/ч

12.3 Гидравлические схемы

Следующие гидравлические схемы приведены в качестве примеров по установке VPS/3-7. Эти схемы не заменяют обязательного планирования всех подключений системы в соответствии со правилами.

Сведения о подсоединении труб к VPS/3-5 указаны в документе фирмы Vaillant "Информация для проектирования".


Документ фирмы Vaillant "Информация для проектирования" с дополнительными сведениями можно приобрести для:

- буферной емкости
- отдельных отопительных аппаратов

Буферная емкость разделена на две зоны:

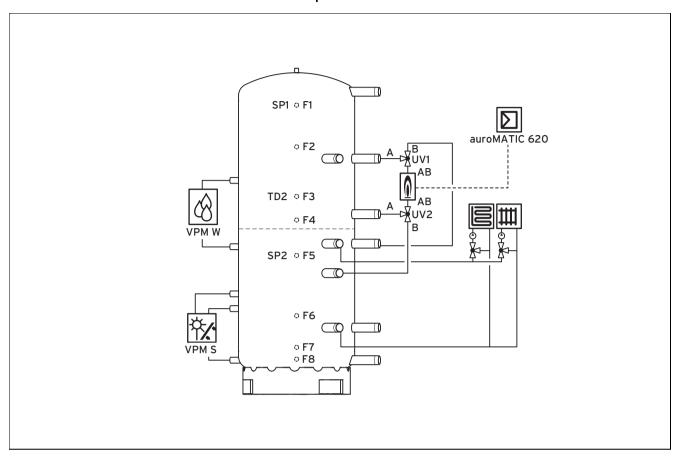
- верхняя часть: подготовка питьевой воды
- нижняя часть: подготовка греющей воды

12.3.1 Гидравлическая схема 1: отопительные аппараты, регулируются с помощью регулятора гелиосистемы auroMATIC VRS 620/3 - вариант 1

- F1 SP1 = датчик температуры емкости (все)
- F3 TD2 = датчик температуры 2
- F6 SP2 = датчик температуры емкости (емкость гелиоустановки)
- UV1 Переключающий вентиль 1
- UV2 Переключающий вентиль 2
- VPM S Насосная группа нагрева от гелиосистемы
- VPM W Насосная группа горячего водоснабжения

В зависимости от типа отопительного аппарата, переключающий вентиль 2 (UV2) находится снаружи или внутри отопительного аппарата.

Указание


Какой из вариантов является подходящим - вариант 1 (гидравлическая схема 1) или вариант 2 (гидравлическая схема 2), зависит от установленного отопительного аппарата и от требуемой температуры в системе.

Указание

К auroMATIC 620 в сочетании с буферной емкостью всегда применяется гидравлическая схема 9.

12.3.2 Гидравлическая схема 2: отопительные аппараты, регулируются с помощью регулятора гелиосистемы auroMATIC VRS 620/3 - вариант 2

F1 SP1 = датчик температуры емкости (все)

UV1 Переключающий вентиль 1

F3 TD2 = датчик температуры 2

UV2 Переключающий вентиль 2

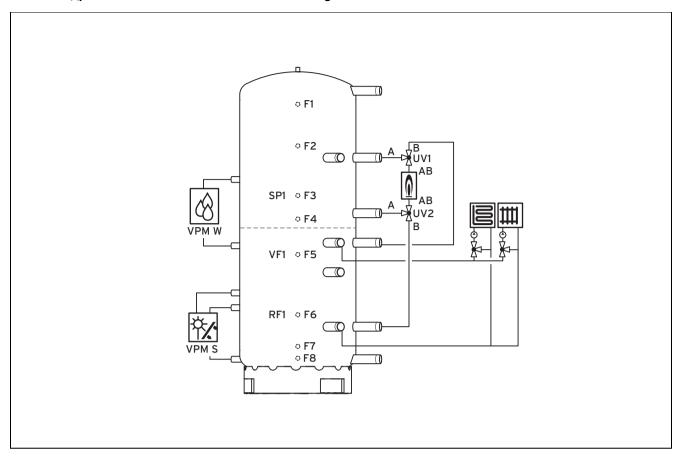
F5 SP2 = датчик температуры емкости (емкость гелиоустановки)

VPM S Насосная группа нагрева от гелиосистемы

VPM W Насосная группа горячего водоснабжения

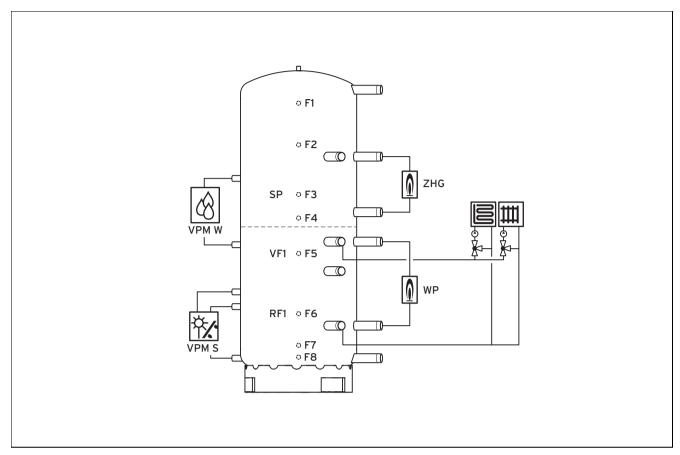
В зависимости от типа отопительного аппарата, переключающий вентиль 2 (UV2) находится снаружи или внутри отопительного аппарата.

Указание


Какой из вариантов является подходящим - вариант 1 (гидравлическая схема 1) или вариант 2 (гидравлическая схема 2), зависит от установленного отопительного аппарата и от требуемой температуры в системе.

Указание

К auroMATIC 620 в сочетании с буферной емкостью всегда применяется гидравлическая схема 9.


12.3.3 Гидравлическая схема 3: тепловой насос geoTHERM /3

- F3 SP1 = датчик температуры емкости (все)
- F5 VF1 = датчик температуры теплоносителя в подающей линии 1/датчик температуры емкости/датчик температуры гидравлического разделителя
- F6 RF1 = датчик температуры теплоносителя в обратной линии/датчик температуры емкости
- UV1 Переключающий вентиль 1
- UV2 Переключающий вентиль 2
- VPM S Насосная группа нагрева от гелиосистемы
- VPM W Насосная группа горячего водоснабжения

В зависимости от типа теплового насоса, переключающий вентиль 2 (UV2) находится снаружи или внутри теплового насоса.

12.3.4 Гидравлическая схема 4: тепловой насос geoTHERM /3 + дополнительный отопительный аппарат

- F3 SP = датчик температуры емкости в дополнительном отопительном аппарате
- F5 VF1 = датчик температуры теплоносителя в подающей линии теплового насоса
- F6 RF1 = датчик температуры теплоносителя в обратной линии теплового насоса

ZHG Дополнительный отопительный аппарат

WP Тепловой насос

VPM S Насосная группа нагрева от гелиосистемы

VPM W Насосная группа горячего водоснабжения

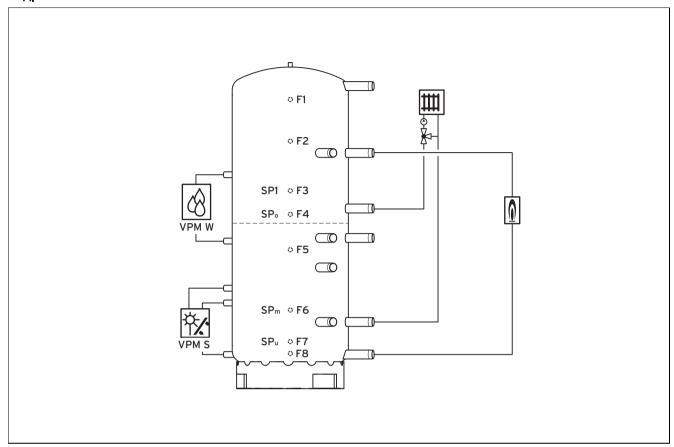


Указание

Если тепловой насос используется в качестве отопительного аппарата, а температура на выходе должна оставлять > 60 °C, то нужно установить дополнительный отопительный аппарат. В этом случае тепловой насос будет использоваться исключительно для нагрева греющей воды. В этом случае дополнительный отопительный аппарат будет использоваться исключительно для нагрева питьевой воды.

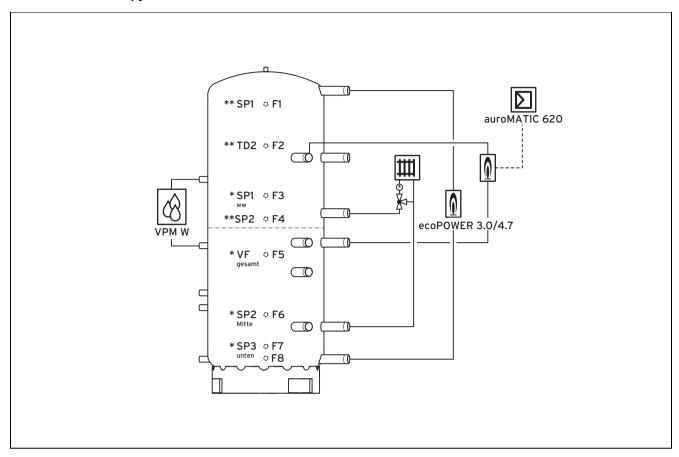
12.3.5 Гидравлическая схема 5: при настенном монтаже насосной группы нагрева от гелиосистемы и насосной группы горячего водоснабжения

Гидравлическая схема 5: при настенном монтаже насосной группы нагрева от гелиосистемы и насосной группы горячего водоснабжения



VPM S Насосная группа нагрева от гелиосистемы

VPM W Насосная группа горячего водоснабжения


12.3.6 Гидравлическая схема 6: пеллетный отопительный котел renerVIT

Гидравлическая схема 6: пеллетный отопительный котел renerVIT

- F3 SP1 = датчик температуры емкости (все)
- F4 SP_o = датчик температуры емкости (сверху)
- F6 SP_m = датчик температуры емкости (посередине)
- F7 $SP_u = датчик температуры емкости (снизу)$
- VPM S Насосная группа нагрева от гелиосистемы
- VPM W Насосная группа горячего водоснабжения

12.3.7 Гидравлическая схема 7: блочная теплоэлектростанция есоPOWER 3.0/4.7 + устройство пиковой нагрузки

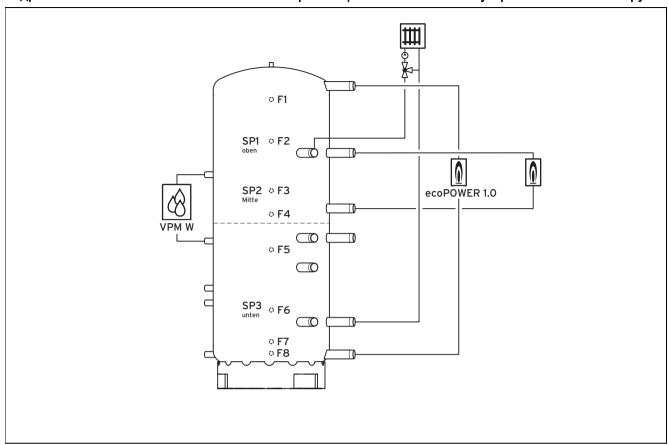
- F1 SP1 = датчик температуры емкости (все)
- F2 TD2 = датчик температуры 2
- F3 SP1_{ww} = датчик температуры емкости (все)
- F4 SP2 = датчик температуры емкости (емкость гелиоустановки)
- F5 VF_{gesamt} = датчик температуры теплоносителя в подающей линии (все)
- F6 SP2_{Mitte} = датчик температуры емкости (емкость гелиоустановки) (посередине)
- F7 SP3_{unten} = датчик температуры емкости (емкость/бассейн) (снизу)

VPM W Насосная группа горячего водоснабжения

^{**} Датчики соединяются с auroMATIC 620.

Указание

Используемое устройство пиковой нагрузки должно быть пригодно для применения с auroMATIC 620.


Указание

К auroMATIC 620 в сочетании с буферной емкостью всегда применяется гидравлическая схема 9.

^{*} Датчики соединяются с ecoPOWER 3.0/4.7.

12.3.8 Гидравлическая схема 8: блочная теплоэлектростанция есоPOWER 1.0 + устройство пиковой нагрузки

Гидравлическая схема 8: блочная теплоэлектростанция есоPOWER 1.0 + устройство пиковой нагрузки

F6

- F3 SP1_{oben} = датчик температуры емкости (все) (сверху)
- F4 SP2_{Mitte} = датчик температуры емкости (емкость гелиоустановки) (посередине)
- SP3_{unten} = датчик температуры емкости (емкость/бассейн) (снизу)

12.4 Ввод системы в эксплуатацию

12.4.1 Наполнение системы и удаление воздуха

Действительно для: Россия

▶ Соблюдайте руководства по монтажу приборов.

Условия: Насосная группа горячего водоснабжения и насосная группа нагрева от гелиосистемы присутствуют и установлены, Вентили насосных групп открыты

- Наполните отопительный контур и удалите из него воздух.
- Наполните контур горячей воды и удалите из него воздух.
- Наполните гелиоконтур и удалите из него воздух.

 - ⊲ Буферная ёмкость потребляет солнечное тепло.
- Наполните буферную ёмкость и удалите из нее воздух.
 - ⊲ Буферная ёмкость и насосные группы наполняются одновременно.
 - Воздух выходит из насосных групп через буферную ёмкость.

Осторожно!

Коррозия аллюминия и вытекающее из этого нарушение герметичности из-за неподходящей греющей воды!

В отличии, например, от стали, серого чугуна или меди, реакция алюминия на щелочную греющую воду (значение pH > 8,5) протекает со значительной коррозией.

 Убедитесь, что значение рН греющей воды, контактирующей с алюминием, находится в пределах 6,5 и максимум 8,5.

Осторожно!

Опасность материального ущерба в результате добавления в греющую воду антифриза или средств для защиты от коррозии!

Антифриз и средства для защиты от коррозии могут причинить изменения уплотнений, вызвать появление шумов при работе в режиме отопления и, возможно, причинить дальнейший косвенный ущерб.

- Не используйте антифриз и средства для защиты от коррозии.
- Если указанные в ниже следующей таблице предельные значения не соответствуют, то необходимо подготовить греющую воду.

Суммар- ная теплопро- изводи- тельность	Общая жесткость при минимальной поверхности нагрева котла ²⁾ 20 л/кВт >20 л/кВт >50 л/кВт <50 л/кВт					
кВт	εж	моль/м ³	εж	моль/м ³	εж	моль/м
<50	<6 ¹	<3 1	4	2	0,04	0,02
>50≤200	4	2	3	1,5	0,04	0,02
>200≤600	3	1,5	0,04	0,02	0,04	0,02
>600	0,04	0,02	0,04	0,02	0,04	0,02

- 1) В системах с проточными водонагревателями и для систем с электрическими нагревательными элементами
- 2) От особого объема системы (литры номинальный объем/теплопроизводительность; на многокотельных установках нужно настроить минимальную единичную теплопроизводительность).

Эти данные действительны только максимум для 3-кратного объема системы для заправочной и добавочной воды. Если 3-кратный объем системы будет превышен, то с водой нужно будет поступить также, как это описано для случая превышения указанных в этой таблице предельных значений, то есть согласно инструкций VDI (снижение жесткости воды, удаление солей, стабилизация жесткости воды или выпадение в шлам).

13 Сервисная служба

Действительно для: Россия, Vaillant

Актуальную информацию по организациям, осуществляющим гарантийное и сервисное обслуживание продукции Vaillant, Вы можете получить по телефону "горячей линии" и по телефону представительства фирмы Vaillant, указанным на обратной стороне обложки инструкции. Смотрите также информацию на Интернет-сайте.

0020171094_01 15.03.2018

ООО "Вайлант Груп Рус", Россия

143421 Московская область - Красногорский район 26-й км автодороги «Балтия», бизнес-центр «Рига Ленд» ■ Строение 3, 3-й подъезд, 5-й этаж Тел.: +7 495 788 45 44 ■ Факс: +7 495 788 45 65

Техническая поддержка для специалистов: +7 495 921 45 44 (круглосуточно)

info@vaillant.ru ■ www.vaillant.ru ■ вайлант.рф

Данные руководства или их части охраняются авторским правом и могут копироваться или распространяться только с письменного согласия изготовителя.